BME1471: Rehabilitation Engineering
Course Syllabus, Winter 2023-2024
Course Instructor: Kei Masani

Introduction and course objectives
Rehabilitation and biomedical engineering are closely linked in various aspects and need to be studied together. For example, electrical stimulation and robotics technologies have recently been proven to facilitate rehabilitation outcomes. Knowledge of the state-of-the-art engineering technologies is required for students in biomedical engineering research. Furthermore, developing new technologies that assist rehabilitation requires thorough knowledge of physiological systems and understanding how they link to those technologies. This course will introduce various state-of-the-art technologies in rehabilitation engineering. To cover diverse research topics in the field, expert guest lecturers in each field will be invited. The physiological basis of each technique will be emphasized, to encourage students to understand fundamental principles of each technique and to seek applications in their own areas of research.

Course time and location
Lectures will be held on Fridays, 10am-12pm. MY330.

Contact info, office hours, and contact policies
I can be reached at the following email address: k.masani@utoronto.ca, and you are welcome to email me anytime. For email messages, please include “[BME1471]” in the subject line.

Marking scheme
Assignments: 100%
Assignment 1 (80%): At each lecture, a brief, 1-page summary needs to be submitted, involving following 3 sections:
- 1. research problem/motivation: why do it
- 2. current technologies: what is available (incl. previous/current studies done in the field)
- 3. new/future technologies: what is proposed by the lecturer.
Each point should be clearly summarized. Additional opinions/comments on the topic would be preferable, as it indicates that the student digests the research topic well. Required for at least 7 lectures. Each summary is due in one week after each lecture.
Assignment 2 (20%): For one lecture, a brief review on the lecture topic (3-5 pages) needs to be submitted. The review is due in two weeks after the course end date (tentative).

Course outline and important dates
Week 1, Jan 12: Introduction
Week 2, Jan 19: Muscle fatigue reduction during FES
Week 3, Jan 26: FES therapy for standing balance
Week 4, Feb 2: Dr. Jan Andrysek
Week 5, Feb 9: Dr. Azadeh Yadollahi
Week 6, Feb 16: Dr. Elaine Biddiss
Week 7, Feb 23: * Reading Week
Week 8, Mar 1: Dr. Jose Zariffa
Week 9, Mar 8: Dr. Paul Yoo
Week 10, Mar 15: Dr. Cesar Marquez
Week 11, Mar 22: Dr. Atena Roshan Fekr
Week 12, Mar 29: * Good Friday
Week 13, Apr 5: Dr. Babak Taati (11am-12pm)