Molecular Engineering
Molecular engineering aims to advance disease detection, customize drug delivery and improve health-care outcomes with faster and more precise technologies and systems.
Check out the case studies below to learn about the exciting research done here at BME:
Nanotechnology

Shape-shifting nanoparticles for delivering cancer drugs to tumours
Chemotherapy isn’t supposed to make your hair fall out — it’s supposed to kill cancer cells.
Professor Warren Chan’s Integrated Nanotechnology & Biomedical Sciences Laboratory builds targeted drug delivery systems designed to enter specific areas of your body. He and his team have created a set of nanoparticles attached to strands of DNA that function like a protein, but can be programmed to change shape and chemistry, allowing them to navigate through the traps in the body and gain access into diseased tissue.
Their discovery will lead to further advances in personalized nanomedicine — enabling tailored particles to deliver drugs into targeted types of tumours, and nowhere else.
Molecular Imaging

Smarter scans for earlier cancer detection
Professor Hai-Ling Margaret Cheng was working as an electrical engineer in the aerospace and defense industry when she realized the signal-processing techniques she was using could also enhance magnetic resonance imaging (MRI) scans.
Today, her team is dedicated to improving MRI technology. Specifically, the Cheng Lab looks at ways to modify and enhance chemicals that give off a strong magnetic resonance signal, known as contrast agents, to accentuate visual accuracy of specific tissues and organs. Her lab is also developing novel, rapid imaging approaches to give us information about tissue physiology and functional dynamics.
Her developments in this area have proven promising in earlier cancer detection and stem cell observations for human tissue repair.
Systems Biology

Shrinking the lab—mini diagnostic tools for rapid, on-site results
Professor Aaron Wheeler is taking the lab to you.
His team builds miniature labs using digital microfluidics — a liquid-handling technology that can analyze tiny drops of chemical and biological fluids on site. Using electrostatic forces, their lab-on-a-chip device can manipulate these samples and probe them with built-in sensors for rapid analysis, all on something the size of a credit card.
The technology aims to allow advanced diagnostic tests to be performed at a patient’s bedside or in remote places around the world to give accurate results in less time.
Read more news about molecular engineering
U of T Engineering lab partners with Moderna to develop RNA-based tools to treat and prevent disease
A team of U of T Engineering researchers, led by Professor Omar F. Khan (BME), has partnered with biotechnology company Moderna to develop next-generation RNA platform technologies.
Seeing smaller than light: How an advanced microscopy technique can help in the fight against cancer and other diseases
Microscopes are some of the most powerful tools in cell biology — but what if the cell component that needs to be imaged is smaller than the wavelengths of visible light? A new study from Professor Chris Yip (ChemE, BME) proposes a solution, one that could help advance research into cancer and other diseases.
People of Medicine by Design: Omar F. Khan
May 25, 2022 | Omar F. Khan was first inspired to be an engineer by his father’s workplace accident. Now, his lab is studying nanomaterials & pushing the boundaries of regenerative medicine.
U of T partners with Moderna to advance research in RNA science and technology
April 7, 2022 | Dr. Omar Khan’s lab is creating new nanotechnologies to control and deliver nucleic acids, will lead a team that plans on working with Moderna to develop next-generation vaccine platforms.
BME researcher receiving New Frontiers in Research Fund
December 15, 2021 | Hai-Ling Margaret Cheng was one of the UofT researchers receiving the New Frontiers in Research Fund.