Molecular Engineering

Molecular engineering aims to advance disease detection, customize drug delivery and improve health-care outcomes with faster and more precise technologies and systems.

Check out the case studies below to learn about the exciting research done here at BME:

Nanotechnology

Warren Chan in a lab with a graduate student
Shape-shifting nanoparticles for delivering cancer drugs to tumours

Chemotherapy isn’t supposed to make your hair fall out — it’s supposed to kill cancer cells.

Professor Warren Chan’s Integrated Nanotechnology & Biomedical Sciences Laboratory builds targeted drug delivery systems designed to enter specific areas of your body. He and his team have created a set of nanoparticles attached to strands of DNA that function like a protein, but can be programmed to change shape and chemistry, allowing them to navigate through the traps in the body and gain access into diseased tissue.

Their discovery will lead to further advances in personalized nanomedicine — enabling tailored particles to deliver drugs into targeted types of tumours, and nowhere else.

Molecular Imaging

Margaret Cheng in a lab with graduate students
Smarter scans for earlier cancer detection

Professor Hai-Ling Margaret Cheng was working as an electrical engineer in the aerospace and defense industry when she realized the signal-processing techniques she was using could also enhance magnetic resonance imaging (MRI) scans.

Today, her team is dedicated to improving MRI technology. Specifically, the Cheng Lab looks at ways to modify and enhance chemicals that give off a strong magnetic resonance signal, known as contrast agents, to accentuate visual accuracy of specific tissues and organs. Her lab is also developing novel, rapid imaging approaches to give us information about tissue physiology and functional dynamics.

Her developments in this area have proven promising in earlier cancer detection and stem cell observations for human tissue repair.

Systems Biology

Aaron Wheeler in a lab with graduate students
Shrinking the lab—mini diagnostic tools for rapid, on-site results

Professor Aaron Wheeler is taking the lab to you.

His team builds miniature labs using digital microfluidics — a liquid-handling technology that can analyze tiny drops of chemical and biological fluids on site. Using electrostatic forces, their lab-on-a-chip device can manipulate these samples and probe them with built-in sensors for rapid analysis, all on something the size of a credit card.

The technology aims to allow advanced diagnostic tests to be performed at a patient’s bedside or in remote places around the world to give accurate results in less time.

Read more news about molecular engineering

Seven BME members receive Joint Seed Program funding for interdivisional research

Initiated in 2015, the Joint Seed Program is an interdivisional research funding program designed to promote multi-disciplinary research and catalyze new innovative partnerships between researchers from the Faculty of Applied Science and Engineering and those from outside of Engineering. The recipients for this year will undertake unique and innovative research initiatives ranging from developing bioinoculant strategies to equitable healthcare and advanced imaging techniques.

Accelerate Seed Grant recipient aims to improve delivery of drugs that treat brain diseases using self-driving lab technology

Professor Leo Chou have received Acceleration Consortium Seed Grant funding for his research on building DNA origami as a delivery vehicle for therapeutic agents

CRAFT-led team awarded $17.5M to create new generation of ‘distributed’ diagnostics

A team of researchers from the University of Toronto (U of T), Unity Health Toronto (Unity), University Health Network (UHN) and the National Research Council of Canada (NRC) have been awarded a $17.5M grant from the Canada Foundation for Innovation and partners to build the Diagnostic Horizons Lab (DHL) in Toronto.

Two BME faculty members were awarded the Accelerate Seed Grant and Accelerate Moonshot grant

Milica Radisic and Leo Chou are two BME faculty members who were awarded the Accelerate Seed Grant and Accelerate Moonshot grant, as a part of a $1.2 million total funding from the Acceleration Consortium

‘Images every second’: Researchers develop rapid MRI technique for better cancer detection and therapy

Professor Hai-Ling Cheng and her team have developed a rapid magnetic resonance imaging (MRI) technique to help doctors better detect and diagnose tumours. The 3D images generated from this new approach could provide physicians with guidance during surgery and other therapeutic interventions.

Four Biomedical Engineering Faculty Members Secure CIHR Funding for Research Projects

Four esteemed faculty members from the Institute Biomedical Engineering (BME) at the University of Toronto have successfully secured funding from the Canadian Institutes of Health Research (CIHR) through the Project Grant Program’s fall 2023 funding cycle. The CIHR funding will support their cutting-edge research projects aimed at advancing health-related knowledge and outcomes.